Transport simulation for air quality assessment Air Breizh

Equasim workshop 2025

Marjolaine JUSTIN, Air quality modelling engineer

Marion DELIDAIS, Atmospheric emissions inventory engineer

Our missions: monitoring the air, climate and energy data in Britanny

Measure

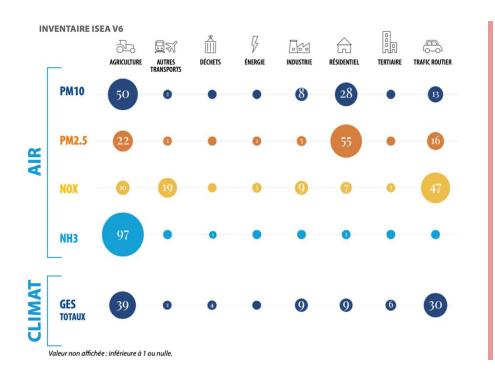
With our regional network of air quality monitoring stations

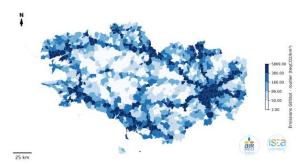
Raise awareness

Inform the general public and differents stakeholders (the EU, the state, local governements) about air quality and climate issues

2

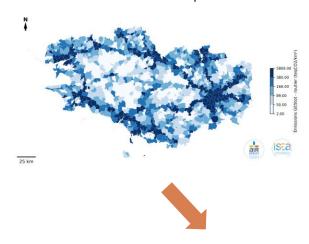
Monitor


Data analysis, Emission production assessment, Air quality modelling

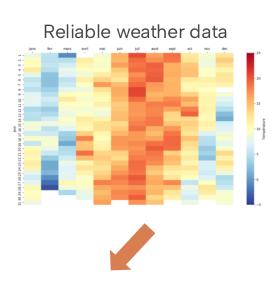


Our challenge: ISEA, the inventory of emissions

- Quantify pollutants of air $(PM_{10}, NO_X, NH_3...)$ for thirty pollutants
- And climate, with greenhouse gas (CO₂, N₂O, CH₄...)
- For each sector, and specially road traffic
- Assist in the planning and monitoring of regulatory planning actions

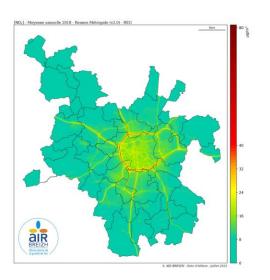


Our challenge: Modelling air quality using the ISEA database


To produce a good air quality assesement we need:

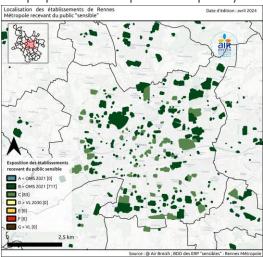
Accurate emissions quantification

Precise emissions spatialisation

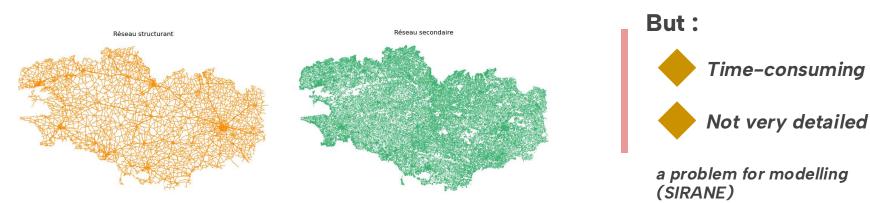


Our challenge: Modelling air quality using the ISEA database

After the validation with in situ measurements, the resulting air concentration maps are used:


For air quality assessment

For public policy scenarios such as LEZ (Low Emissions Zones) or urban planning projects


To estimate the exposure of the population to poor air quality

Our challenge: quantify pollutant emissions and produce high-resolution modelling of air quality

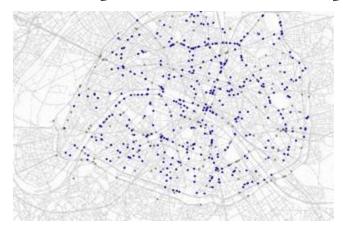
Road traffic is one of the main contributors to pollutant emissions
... which can be imprecise

Primary road network Secondary road network

BD Topo with manual extension of the traffic counts

Since 2022, Air Breizh has been moving into modelling!





Sebastian Hörl

Milos Balac

- An open source project with documentation
- ... using french open data

Exemple d'une visualisation dynamique du déplacements des agents d'Egasim, Egasim.org

adaptation to Brittany

a correction method based on traffic count data

limited perspective on the technology, its inputs, and the available documentation?

an automated process?

2025 : an internship to incorporate these modelling results into the emissions inventory

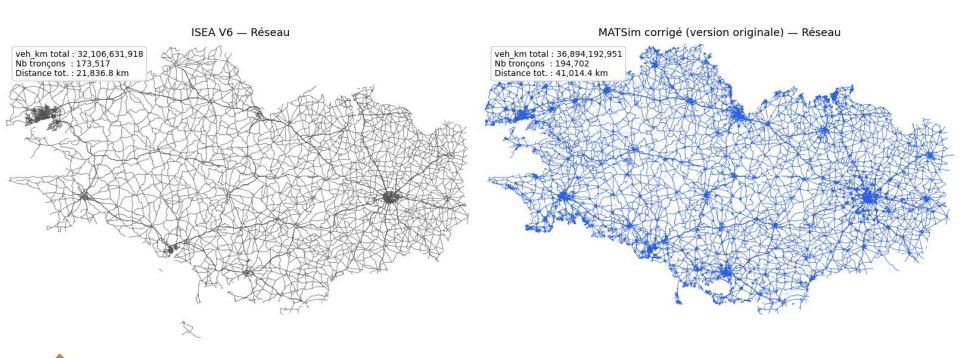
Reinstall the modelling environment on a more powerful machine

Reduced computation times and the capacity to model a larger domain Updated calculation methods and the inclusion of new data

Fully automated processing chain adapted to Air Breizh technologies

Package python and notebooks electrical documentation, ...

Building a methodological foundation and documentation


Sensitivity testing of the model (parameters, etc.)

L'Open Data pour modéliser le trafic routier ATSIM Un modèle trafic On le dit multi-agents car il calcule le trafic en générant des "agents", à savoir des personnes fictives, par le biais de multiples données et simule leurs déplacements Eqasim au territoire français Une simulation de bretons fictifs (plutôt) intelligents Il s'agit d'un environnement permettant entre autres, une prise en main facilitée de MATSim Cela passe notamment Trafic Moyen Journalier Annuel (TMJA) Tout type de véhicules motorisés confondus par la considération des données françaises. [50 - 200] 200 - 1000 [1000 - 41175 1 TMJA >= 50 Discrétisation : quartiles Variation de taille : Méthode exponnentielle Comparaison aux données de comptages : des sorties de modèle sous-estimant le trafic routier $R^2 = 0.63$ r = 0.80Les données des points de comptage de 2023 et 2024 permettent d'avoir une idée de la Sur les 8255 tronçons OSM couverts par des données de comptages, le modèle sous-estime le trafic mais semble tenir la route. Pour qu'il soit Sources des données de modélisation IGN, INSEE, Ministère de l'Environnement (SDES), OSM. utilisé par les ingénieurs d'Air Breizh, une correction spécifique par ces données de Sources des données de comptages · Ligne d'égalié Departements (35, 56, 22, 29), DIR Ovest, comptage sera de mise. Technologies de modélisation utilisées Realisation: Charly Clantar, 2025

ISEA v6 2022 vs Matsim 2024

Bilan ISEA V6 et MATSim corrigé (version sans unclassified)

The corrected MATSim network is much more detailed than the ISEA V6 network, with more road segments and improved spatial accuracy.

As a result, the total vehicle-kilometres are higher, reflecting a more complete representation of real traffic flows.

Results

ISEA v6 2022

from an older version of Prism

Substance	Total	
bc	262 218	
ch4	152 957	
co2.ind	919 771	
co2.nbio	6 414 659 463	
no2	4 981 855	
nox	15 516 568	
pm10	2 498 280	
pm2.5	1 527 923	
tsp	4 176 538	

Matsim 2022 model release

from an older version of Prism

Substance	Total	
bc	147 376	
ch4	268 519	
no2	4 088 512	
nox	14 659 138	
pm10	2 529 092	
pm2.5	1 533 772	

Matsim 2024 model release

from the latest version of Prism

Substance	Total
bc	coming soon
ch4	coming soon
no2	coming soon
nox	15 302 655
pm10	coming soon
pm2.5	coming soon

Wehicle kilometer indicator

32 017 899 370 Linéaire **839 488 891** Surfacique

Wehicle kilometer indicator

28 876 786 310

Wehicle kilometer indicator

33 362 408 869

32 857 388 261

The potential causes

The OSM road network has become denser

A change in methodology since 2022

- After running MATSim, real traffic counts are applied where available
- Three redistribution methods were tested and evaluated: nearest neighbour, KNN, and an fclass-based approach.
- Real integration of TMJA data:

400	2022	2024
300	TMJA: 400	TMJA:

Highway	2022	2024 v2
Residential	80 554	104 997
	77 602	85 190
Total	157 556	190 167

The selected method is a KNN model applied within each fclass, providing consistent and reliable results for emissions calculs.

Thanks for your attention!

Do you have some questions?

